Sains Malaysiana 54(8)(2025): 2059-2074

http://doi.org/10.17576/jsm-2025-5408-15

 

Formulasi Pemangkin Stanum-Kuprum untuk Penurunan CO2 Elektrokimia dalam Sel Elektrosintesis Mikrob

(Formulation of Copper-Tin Catalyst for Electrochemical CO2 Reduction in Microbial Electrosynthesis Cells)

 

IRWAN IBRAHIM1, AMIRUL AIMAN RIO HENDRY2, MIMI HANI ABU BAKAR1, MANAL
ISMAIL1,3, KEE SHYUAN LOH1 & SWEE SU LIM1,*

 

1Institut Sel Fuel (SELFUEL), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Fakulti Kejuteraan Awam, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

3Jabatan Kejuruteraan Kimia dan Proses, Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Diserahkan: 11 Januari 2025/Diterima: 3 Julai 2025

 

ABSTRAK

Proses penurunan CO2 menggunakan pendekatan bio-elektrokimia merupakan satu bidang yang masih baharu dalam dunia kajian. Sistem Mikrob Elektrosintesis (SME) merupakan sistem bio-elektrokimia yang menggunakan mikrob elektrogenik, iaitu mikrob yang menggunakan elektrik sebagai tenaga untuk proses penurunan Karbon Dioksida (CO2) dalam menghasilkan sebatian kimia. Kajian ini mengguna pakai SME untuk menghasilkan asid formik menggunakan mikrob elektrogenik. Proses ini dipercepatkan lagi menggunakan pemangkin bio-katod yang diubah suai melalui proses penyaduran elektrokimia untuk menambah lapisan kuprum-stanum oksida di atas permukaan kain karbon. Kuprum dan stanum merupakan logam yang dikenal pasti mampu meningkatkan kadar tindak balas penurunan CO2 kepada sebatian yang bersifat hidrokarbon, iaitu formik dalam kajian ini. Melalui kajian yang dijalankan yang terdiri daripada Cu-Sn-EDTA, Cu-Sn-Sb-EDTA, Cu-Sn-NaCit dan Cu-Sn-Sb-NaCit, sebatian Cu-Sn-EDTA telah dikenal pasti menggunakan FESEM-EDX menunjukkan struktur kristal berbentuk bunga yang terbentuk melalui tindak balas nukleasi dengan taburan aloi gangsa yang agak seimbang. Dengan mengaplikasi katod komposit tersebut ke sistem SME telah menunjukkan penghasilan ketumpatan arus dan purata voltan yang stabil dan tertinggi pada -19.14 A/cm2 dan -0.49 V dan kadar penghasilan formik sehingga 0.137 M/d. Analisis kitaran voltametri sel penuh pula menunjukkan Cu-Sn bio katod mencatatkan puncak penurunan yang terendah pada voltan -1.0 V, iaitu bersamaan dengan voltan gunaan semasa operasi SME.

Kata kunci: Mikrob elektrosintesis; pemangkin kuprum-tin; penghasilan asid formik; penurunan elektrokimia CO2; sistem bioelektrokimia

 

Abstract

The CO2 reduction process using a bioelectrochemical approach is a novel field of study. The Microbial Electrosynthesis (MES) system is a type of bioelectrochemical system that utilizes electrogenic microbes, microorganisms that use electricity as an energy source, to reduce carbon dioxide (CO2) and produce chemical compounds. This study applies MES to produce formic acid using electrogenic microbes. The process is further accelerated by a modified biocathode catalyst, created through an electrochemical deposition process to form a copper-tin oxide layer on the surface of carbon cloth. Copper and tin are metals known to enhance the rate of CO2 reduction into hydrocarbon-based compounds, specifically formic acid in this study. Among the tested materials - CuSn-EDTA, CuSnSb-EDTA, CuSn-NaCit, and CuSnSb-NaCit - CuSn-EDTA was identified through FESEM-EDX analysis to exhibit a flower-shaped crystalline structure formed via nucleation, with relatively uniform bronze alloy distribution. The application of this composite cathode in the MES system demonstrated the highest and most stable current density and average voltage, at -19.14 A/cm² and -0.49 V, respectively, and achieved a formic acid production rate of up to 0.137 M/d. Full-cell cyclic voltammetry analysis showed that the CuSn biocathode recorded the lowest reduction peak voltage at -1.0 V, consistent with the operating voltage used in the MES process.

Keywords: Bioelectrochemical systems; copper-tin catalyst; electrochemical CO2 reduction; formic acid production; microbial electrosynthesis

 

RUJUKAN

Barbano, E.P., De Oliveira, G.M., De Carvalho, M.F. & Carlos, I. 2014. Copper–tin electrodeposition from an acid solution containing EDTA added. Surface & Coatings Technology 240: 14-22.

Chen, Y., Chen, K., Fu, J., Yamaguchi, A., Li, H., Pan, H., Hu, J., Miyauchi, M. & Liu, M. 2020. Recent advances in the utilization of copper sulfide compounds for electrochemical CO2 reduction. Nano Materials Science 2(3): 235-247.

Das, S., Das, S., Das, I. & Ghangrekar, M. 2019. Application of bioelectrochemical systems for carbon dioxide sequestration and concomitant valuable recovery: A review. Materials Science for Energy Technologies 2(3): 687-696.

Dessì, P., Rovira-Alsina, L., Sánchez, C., Dinesh, G.K., Tong, W., Chatterjee, P., Tedesco, M., Farràs, P., Hamelers, H.M. & Puig, S. 2021. Microbial electrosynthesis: Towards sustainable biorefineries for production of green chemicals from CO2 emissions. Biotechnology Advances 46: 107675.

Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Quéré, C. L., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Zaehle, S. 2019. Global Carbon Budget 2019. Earth System Science Data 11(4): 1783–1838. https://doi.org/10.5194/essd-15-5301-2023

Grujičić, D. & Pešić, B. 2002. Electrodeposition of copper: The nucleation mechanisms. Electrochimica Acta 47(18): 2901-2912.

Ibrahim, I., Salehmin, M.N.I., Balachandran, K., Me, M.F.H., Loh, K.S., Bakar, M.H.A., Jong, B.C. & Lim, S.S. 2023. Role of microbial electrosynthesis system in CO2 capture and conversion: A recent advancement toward cathode development. Frontiers in Microbiology https://doi.org/10.3389/fmicb.2023.1192187

International Energy Agency (IEA). 2023. CO2 Emissions in 2022. https://www.iea.org/reports/co2-emissions-in-2022

Izadi, P., Fontmorin, J.M., Virdis, B., Head, I.M. & Yu, E.H. 2021. The effect of the polarised cathode, formate and ethanol on chain elongation of acetate in microbial electrosynthesis. Appl. Energy 283: 116310.

Krajaisri, P., Puranasiri, R., Chiyasak, P. & Rodchanarowan, A. 2022. Investigation of pulse current densities and temperatures on electrodeposition of tin-copper alloys. Surface and Coatings Technology 435: 128244.

Qin, B., Wang, H. & Peng, F. 2017. Effect of the surface roughness of copper substrate on three-dimensional tin electrodes for electrochemical reduction of CO2 into HCOOH. Journal of CO2 Utilization 21: 219-223.

Ragsdale, S.W. & Pierce, E. 2008. Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochimica Et Biophysica Acta (BBA) - Proteins and Proteomics 1784(12): 1873-1898.

Rasul, S., Pugnant, A., Xiang, H., Fontmorin, J. & Yu, E.H. 2019. Low cost and efficient alloy electrocatalysts for CO2 reduction to formate. Journal of CO2 Utilization 32: 1-10.

Salehizadeh, H., Yan, N. & Farnood, R. 2020. Recent advances in microbial CO2 fixation and conversion to value-added products. Chemical Engineering Journal 390: 124584.

Słupska, M. & Ozga, P. 2014. Electrodeposition of Sn-Zn-Cu alloys from citrate solutions. Electrochimica Acta 141: 149-160.

Tahir, K., Ali, A.S., Kim, J., Park, J., Lee, S., Kim, B., Lim, Y., Kim, G. & Lee, D.H. 2023. Enhanced biodegradation of perfluorooctanoic acid in a dual biocatalyzed microbial electrosynthesis system. Chemosphere 328: 138584.

Thatikayala, D. & Min, B. 2021. Copper ferrite supported reduced graphene oxide as cathode materials to enhance microbial electrosynthesis of volatile fatty acids from CO2. Science of the Total Environment 768: 144477.

 Valeeva, A.K. & Valeev, I.S. 2015. Electrodeposition of SnSbCu alloy on copper from an electrolyte with varied content of antimony chloride. Russian Physics Journal 58(6): 869-872.

Walsh, F.C. & Low, C.T.J. 2016. A review of developments in the electrodeposition of tin-copper alloys. Surface & Coatings Technology 304: 246-262.

 

*Pengarang untuk surat-menyurat; email: limss@ukm.edu.my

 

 

 

 

 

 

 

 

 

           

sebelumnya