Sains
Malaysiana 54(8)(2025): 2059-2074
http://doi.org/10.17576/jsm-2025-5408-15
Formulasi
Pemangkin Stanum-Kuprum untuk Penurunan CO2 Elektrokimia dalam Sel
Elektrosintesis Mikrob
(Formulation of Copper-Tin Catalyst for
Electrochemical CO2 Reduction in Microbial Electrosynthesis Cells)
IRWAN IBRAHIM1, AMIRUL AIMAN RIO
HENDRY2, MIMI HANI ABU BAKAR1, MANAL
ISMAIL1,3,
KEE SHYUAN LOH1 & SWEE SU LIM1,*
1Institut Sel Fuel (SELFUEL), Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor, Malaysia
2Fakulti Kejuteraan Awam, Universiti Teknologi Malaysia, 81310 Johor
Bahru, Johor, Malaysia
3Jabatan Kejuruteraan Kimia dan Proses, Fakulti Kejuruteraan dan Alam
Bina, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Diserahkan: 11
Januari 2025/Diterima: 3 Julai 2025
ABSTRAK
Proses penurunan CO2 menggunakan pendekatan
bio-elektrokimia merupakan satu bidang yang masih baharu dalam dunia kajian.
Sistem Mikrob Elektrosintesis (SME) merupakan sistem bio-elektrokimia yang
menggunakan mikrob elektrogenik, iaitu mikrob yang menggunakan elektrik sebagai
tenaga untuk proses penurunan Karbon Dioksida (CO2) dalam
menghasilkan sebatian kimia. Kajian ini mengguna pakai SME untuk menghasilkan
asid formik menggunakan mikrob elektrogenik. Proses ini dipercepatkan lagi
menggunakan pemangkin bio-katod yang diubah suai melalui proses penyaduran
elektrokimia untuk menambah lapisan kuprum-stanum oksida di atas permukaan kain
karbon. Kuprum dan stanum merupakan logam yang dikenal pasti mampu meningkatkan
kadar tindak balas penurunan CO2 kepada sebatian yang bersifat
hidrokarbon, iaitu formik dalam kajian ini. Melalui kajian yang dijalankan yang
terdiri daripada Cu-Sn-EDTA, Cu-Sn-Sb-EDTA, Cu-Sn-NaCit dan Cu-Sn-Sb-NaCit,
sebatian Cu-Sn-EDTA telah dikenal pasti menggunakan FESEM-EDX menunjukkan
struktur kristal berbentuk bunga yang terbentuk melalui tindak balas nukleasi
dengan taburan aloi gangsa yang agak seimbang. Dengan mengaplikasi katod
komposit tersebut ke sistem SME telah menunjukkan penghasilan ketumpatan arus
dan purata voltan yang stabil dan tertinggi pada -19.14 A/cm2 dan
-0.49 V dan kadar penghasilan formik sehingga 0.137 M/d. Analisis kitaran
voltametri sel penuh pula menunjukkan Cu-Sn bio katod mencatatkan puncak
penurunan yang terendah pada voltan -1.0 V, iaitu bersamaan dengan voltan
gunaan semasa operasi SME.
Kata
kunci: Mikrob elektrosintesis; pemangkin
kuprum-tin; penghasilan asid formik; penurunan elektrokimia CO2;
sistem bioelektrokimia
Abstract
The CO2 reduction
process using a bioelectrochemical approach is a novel field of study. The
Microbial Electrosynthesis (MES) system is a type of bioelectrochemical system
that utilizes electrogenic microbes, microorganisms that use electricity as an
energy source, to reduce carbon dioxide (CO2) and produce chemical
compounds. This study applies MES to produce formic acid using electrogenic
microbes. The process is further accelerated by a modified biocathode catalyst,
created through an electrochemical deposition process to form a copper-tin
oxide layer on the surface of carbon cloth. Copper and tin are metals known to
enhance the rate of CO2 reduction into hydrocarbon-based compounds,
specifically formic acid in this study. Among the tested materials - CuSn-EDTA,
CuSnSb-EDTA, CuSn-NaCit, and CuSnSb-NaCit - CuSn-EDTA was identified through
FESEM-EDX analysis to exhibit a flower-shaped crystalline structure formed via
nucleation, with relatively uniform bronze alloy distribution. The application
of this composite cathode in the MES system demonstrated the highest and most
stable current density and average voltage, at -19.14 A/cm² and -0.49 V,
respectively, and achieved a formic acid production rate of up to 0.137 M/d.
Full-cell cyclic voltammetry analysis showed that the CuSn biocathode recorded
the lowest reduction peak voltage at -1.0 V, consistent with the operating
voltage used in the MES process.
Keywords: Bioelectrochemical
systems; copper-tin catalyst; electrochemical CO2 reduction; formic
acid production; microbial electrosynthesis
RUJUKAN
Barbano, E.P., De Oliveira, G.M., De Carvalho,
M.F. & Carlos, I. 2014. Copper–tin electrodeposition from an acid solution
containing EDTA added. Surface &
Coatings Technology 240: 14-22.
Chen, Y., Chen, K., Fu, J., Yamaguchi, A., Li,
H., Pan, H., Hu, J., Miyauchi, M. & Liu, M. 2020. Recent advances in the
utilization of copper sulfide compounds for electrochemical CO2 reduction. Nano Materials Science 2(3): 235-247.
Das, S., Das, S., Das, I. & Ghangrekar, M.
2019. Application of bioelectrochemical systems for carbon dioxide
sequestration and concomitant valuable recovery: A review. Materials Science for Energy Technologies 2(3): 687-696.
Dessì, P., Rovira-Alsina, L., Sánchez, C.,
Dinesh, G.K., Tong, W., Chatterjee, P., Tedesco, M., Farràs, P., Hamelers, H.M.
& Puig, S. 2021. Microbial electrosynthesis: Towards sustainable
biorefineries for production of green chemicals from CO2 emissions. Biotechnology Advances 46: 107675.
Friedlingstein, P., Jones, M. W., O’Sullivan,
M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch,
S., Quéré, C. L., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B.,
Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Zaehle, S.
2019. Global Carbon Budget 2019. Earth System Science Data 11(4):
1783–1838. https://doi.org/10.5194/essd-15-5301-2023
Grujičić, D. & Pešić, B.
2002. Electrodeposition of copper: The nucleation mechanisms. Electrochimica Acta 47(18): 2901-2912.
Ibrahim, I., Salehmin, M.N.I., Balachandran,
K., Me, M.F.H., Loh, K.S., Bakar, M.H.A., Jong, B.C. & Lim, S.S. 2023. Role
of microbial electrosynthesis system in CO2 capture and conversion: A
recent advancement toward cathode development. Frontiers in Microbiology https://doi.org/10.3389/fmicb.2023.1192187
International
Energy Agency (IEA). 2023. CO2 Emissions in 2022. https://www.iea.org/reports/co2-emissions-in-2022
Izadi, P., Fontmorin, J.M., Virdis, B., Head,
I.M. & Yu, E.H. 2021. The effect of the polarised cathode, formate and
ethanol on chain elongation of acetate in microbial electrosynthesis. Appl. Energy 283: 116310.
Krajaisri, P., Puranasiri, R., Chiyasak, P.
& Rodchanarowan, A. 2022. Investigation of pulse current densities and
temperatures on electrodeposition of tin-copper alloys. Surface and Coatings Technology 435: 128244.
Qin, B., Wang, H. & Peng, F. 2017. Effect
of the surface roughness of copper substrate on three-dimensional tin
electrodes for electrochemical reduction of CO2 into HCOOH. Journal of CO2 Utilization 21: 219-223.
Ragsdale, S.W. & Pierce, E. 2008.
Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochimica Et Biophysica Acta (BBA) -
Proteins and Proteomics 1784(12):
1873-1898.
Rasul, S., Pugnant, A., Xiang, H., Fontmorin,
J. & Yu, E.H. 2019. Low cost and efficient alloy electrocatalysts for CO2 reduction to formate. Journal of CO2 Utilization 32: 1-10.
Salehizadeh, H., Yan, N. & Farnood, R.
2020. Recent advances in microbial CO2 fixation and conversion to
value-added products. Chemical
Engineering Journal 390:
124584.
Słupska, M. & Ozga, P. 2014.
Electrodeposition of Sn-Zn-Cu alloys from citrate solutions. Electrochimica Acta 141: 149-160.
Tahir, K., Ali, A.S., Kim, J., Park, J., Lee,
S., Kim, B., Lim, Y., Kim, G. & Lee, D.H. 2023. Enhanced biodegradation of
perfluorooctanoic acid in a dual biocatalyzed microbial electrosynthesis
system. Chemosphere 328: 138584.
Thatikayala, D. & Min, B. 2021. Copper
ferrite supported reduced graphene oxide as cathode materials to enhance
microbial electrosynthesis of volatile fatty acids from CO2. Science of the Total Environment 768: 144477.
Valeeva, A.K. & Valeev, I.S. 2015.
Electrodeposition of SnSbCu alloy on copper from an electrolyte with varied
content of antimony chloride. Russian
Physics Journal 58(6): 869-872.
Walsh, F.C. & Low, C.T.J. 2016. A review
of developments in the electrodeposition of tin-copper alloys. Surface & Coatings Technology 304: 246-262.
*Pengarang untuk
surat-menyurat; email: limss@ukm.edu.my